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Abstract. Induced representations &f(n) from Sy, x Sz, with f1 + f, = f are discussed.

The induction coefficients (IDCs) or the outer-product reduction coefficienfs of Sy, + Dy (n)

with f < 4 up to a normalization factor are derived by using the linear equation method. Weyl
tableaux for the corresponding Gel'fand basisS@?(n) are defined. The assimilation method

for obtaining Clebsch—Gordan coefficients 0 (n) in the Gel'fand basis for no modification

rule involved couplings from IDCs of Brauer algebras is proposed. Some isoscalar factors of
SO(n) D SO(n — 1) for the resulting irrep A1, A2, A3, A4, O] with Zle i < 4 are tabulated.

1. Introduction

Clebsch—Gordan coefficients (CGCs) are of importance in many physical problems. Besides
those of SO(3) and SO(4), which are discussed extensively in the literature and can
be found in various forms [1,2], analytic expressions for isoscalar factors (ISFs) of
SO(n) D SO — 1), determined using the substitution group technique [3] and which
can be used to evaluate CGCs $0(n) in its canonical basis according to the Racah
factorization lemma [4], are available for the couplirig ] x [l2, 0] to [L1, L2, 0]. In the

early 1970s, the most general CGCsS@ (n) for the coupling [+, I, . .., I,, 0] x [10] and

the corresponding ISFs were derived by Gavrilik [5] using the Gel'fand—Tsetlin expressions
for the representation matrix &fO(n) generators [6]. These CGCs in a different form
were also presented in a monograph of Klimyk [7]. The complementary orthogonal and
symplectic group relations [8] also allowed us to explain the analytical continuation relations
between some multiplicity-free ISFs 800 (r) andS O (5) in SU(2) x SU (2) basis [9], which

were also derived in [10]. Furthemore, ISFs for the coupling, 0] x [/3, 0] to [L1, L, 0]

for some special cases have been determined using the group chain transformation method
[11], and a special class of multiplicity-fre@(n) > O(n — 1) isoscalar factors in the
Gel'fand basis were also derived in [12]. Very recently, ISFOgf1)) > O — 1) for the
coupling 1, I, I3, 0] x [1, 0] were derived using the irreducible tensor basis method. [13]
However, in contrast to th8U (n) case, CGCs of§0O(n) in the canonical basis or ISFs

of SO(n) D SO(n — 1) are usually rank: dependent and therefore difficult to determine
analytically for the general case. In most cases, analytical expressions for the CGCs are

& On leave from: Department of Physics, Liaoning Normal University, Dalian 116029, People’s Republic of
China.
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very complicated and difficult to integrate into applications so tables of CGCs or ISFs, if
available, are useful for practical applications.

In this paper, we will outline a procedure for deriving CGCsS@ (r) in its canonical
basis from induction coefficients (IDCs) ¢f, x Sy, 1+ Dy(n). Brauer algebray(n),
which are similar to the group algebra of the symmetric gréypand which in turn are
related to the decomposition gf-rank tensors of the general linear groGy.(n), are the
centralizer algebras of the orthogonal groQgr) or the symplectic grougp(2m) when
n = —2m. More precisely, ifG is the orthogonal grou@ (n) or the symplectic group
Sp(2m), the corresponding centralizer algebBa(G) are quotients of Brauer's(n)
and Ds(—2m), respectively. Hence, the duality relation betwePn(n) and O(n) or
Sp(2m) is the same as the Schur—Weyl duality relation betw&eand GL(n). Irreducible
representations (irreps) ob,(n) in the standard basis, i.e. the basis adapted to the
chain Dy(n) D Ds_1(n) D --- D Dy(n), have been constructed by using the induced
representation and linear equation method [14], and more elaborately by Leduc and Ram
using the so-called ribbon Hopf algebra approach [15]. Racah coefficients(of and
Sp(2m) were successfully derived from subduction coefficients (SDCd)af:) by using
the Brauer—-Schur—Weyl duality relation [16]. A new simple Young diagrammatic method
for Kronecker products oD (n) and Sp(2m) was also formulated [17] which is actually
based on the induced representation theory of Brauer algebras discussed in this paper.

In section 2 a brief review of irreps oD, (n) in the standard basis will be given. Then
induced representations 8f, x Sy, 1 D¢(n) with f1+ f> = f will be defined. In section 3,
based on the linear equation method which has been proven to be effective in evaluating
IDCs, SDCs of Hecke algebra, and SDCs of Brauer algebras, a procedure for the evaluation
of IDCs of D;(n) will be outlined. In section 4, Weyl tabeaux f61O (n) in its canonical
basis will be defined. Then a general procedure for evaluating CGC®Ogh) in its
canonical basis for couplings that require no modification rules will be outlined. Finally, in
section 5, some analytical expressions for the ISES®@{r) > SO (n — 1) for the resulting
irrep [A1, A2, A3, Aa, O] with 37, 4, < 4 will be tabulated.

2. Brauer algebra and its outer-product basis

The Brauer algebr@,(n) is defined algebraically by 2—2 generatorggs, g2, ..., gr-1, €1

e, ..., es_1} satisfying the following relations [18]
8i8i+18i = 8i+18i8i+1 gigi=g¢& li—jl=2 (1a)
€igi =¢ € gi-16; = ¢;. (1b)

Using the above defined relations and by drawing pictures of link diagrams, [18,19] one
can also derive other useful relations. For example,

eiej = eje; li—jl =2
ei2 = ne; (2)
(g — D*(gi+1) =0.

We assume that the base fieldds The star operation, a conjugate linear maps
defined onD¢(n) by

gj:g,- ej:e,- fori=212,...,f—-1 3)

These are neccessary for defining orthonormal basiB6#).
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It is easy to see thdk1, g2, . .., g1} generate a subalgeb€aS,, which is isomorphic
to the group algebra of the symmetric group; thatlg,(n) > C'S;. The properties of
D¢(n) have been discussed in [18,19]. Based on these results, it is know tlak is
semisimple, i.e. it is a direct sum of a full matrix algebra o@emwhenn is not an integer
or when it is an integer witlk > f — 1, otherwiseD,(n) is no longer semisimple. In the
following, we assume that is an integer withh > f — 1 and henceD,(n) is semisimple.
Irreps of Dy(n) can be denoted by a Young diagram withf — 2, f —4,...,1 or O
boxes. An irrep ofD(n) with f — 2k boxes is denoted as];_». The branching rule of
Df(l’l) N Df,]_(l’l) is

[Mlf—2 = ®rgopylul

where 4] runs through all the diagrams obtained by removing or Xjfdontains less than
f boxes) adding a box ta\]. Hence, the basis vectors @f;(n) in the standard basis can
be denoted by

[A]r—2 Dy (n) [A] -2
[u] Dy _1(n) (]
: : = : 4)
(o] D¢_pi1(n) (o]
L Dy vl

where p] is identical to the same irrep ofy_,, Y,{;] is a standard Young tableau, ani
can be understood either as the Yamanouchi symbols or indices of the basis vectors in the
so-called decreasing page order of the Yamanouchi labelling scheme. Irreps in the standard
basis given by (4) are given in [14] fof < 5. Higher-dimensional results can be derived
using the method outlined in [14] or by employing the Leduc and Ram formulation [15].

In order to study CGCs of O (n), we need to consider induced representations of Brauer
algebra,Sy, x Sz, 1 Df(n) with f1 + f> = f, for the outer products

[1] x [A2] 1) _{harar}[2] Q)
A

where{Ai1A,1} is the number of occurrences of the irrég in the outer productis] x [22].
The standard basis vectors ofi]5, and o], for Dy, (n) and Dy, (n), which are the same
as those forS;, andSy,, can be denoted by (»?)) and |Y['d(w9)), respectively, where

@) =(1,2,..., f1) @) =i+l fit2 ..., r+ f2) (6)

are indices in the standard tableal}t!! and Y2, respectively. The products of the two
basis vectors are denoted by
Y2 vl (@), (@) = (YIS )) V)2 (D) 7

mi > Tmp

which is called a primitive uncoupled basis vector.

Whenn is a positive integer, tensor products of the rank-1 unit tensor operat@(0f
can be used to construct the basis@f(n) in the standard basis explicitly as done so
in [14]. In this case the indices, 2, ..., f are used to distinguish tensor operators from
different spaces. A set of corresponding indi¢gso, ..., is is needed to label the tensor
components which can be takensaslifferent values, namely

T2 T =T ®)

iip-iy”
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The action ofg; ande; on (8) are given by

pl2.i il f _ opl2eitlief
8i JijeeJijivredp T TJrjeedi Jivaedy
T2 Hf g SOz ] (9a)
LR jajaeijivneJr = CJisdi+l i Jij2eJjiv1e-Jf

J

where the sumy_", on the right-hand side means
DUTE= Y TR -T2, + TR, (%)
J Jj#S0(2)

In order to discuss couplings 6fO (n) in the canonical basis, i.e. the basis adapted to
SO(n) DSO0mn—1)>850n—2)>... > S0(2), the rank-1SO(n) tensor components are
classified according to th€O (n) > SO (n — 1) reduction. Namely, the tensor components
of j for rank-1 tensorTj[” of SO(n) are labelled byj = +a, as, ..., a,, Where Tj[l]
with j = o, a3, ..., a,-1 forms a rank-1 tensor 0§ O (n — 1), while 7! is a scalar
of SO(m — 1). The minus sign introduced in £9 is consistent with the Condon—Shortly
phase convention [1] for CGCs ¢fO(3). We assume tha(mi.ijj.g_} spans an orthonormal
inner-product space, hamely

(@2l Tl =T susi (10)
Then, the primitive uncoupled basis vectors given by (7) can be expressed in terms of these
T operators. For example; x S; basis vector can be expressed as

1) =112 = T;72. an
Other uncoupled basis vectors can be obtained by acting on (11)wdhde;.
2= =TITY 13 = allTE =8, ) VT (12)

The left coset decomposition & (n) with respect to the subalgebsa x Sy, is denoted
by
Dr(n) =) @®OK(Sy x Sp) (13)
wk

where the left coset representatiigd’ } have two types of operations. One is the order-
preserving permutations

057°(0]. ) = (@1, w2) (14)
where

(w1) = (as,az, ..., ay) (w2) = (ap41,ap 2, ..., ar) (15)

with a1 < a2 < -+ < ay, ap41 < ap42 < -+ < ay, andg; represents any one of the
numbers 12, ..., f. The other{Q*>'} containsk-fold trace contractions between two sets
of indices(w1) and (w;). For example, inS, x S; 1+ D3(n) for the outer product [2k [1],
there are six elements {Q* } with

{00} =1{1, 82,8182} {05} = {ea, g1e2, €182} (16)
The ordering of the sequencés) is specified in the following way. If there is no
trace contraction, we regard the pde;) = (a1, az,...,a5) as a vector of lengthf;.

1 It should be mentioned that a summation sign on the right-hand side of (3.8) in [14] should be added, which
should be the same asa(9given above except the phase convention. kn),(¢he phase convention is chosen to
be the same as that of Condon-Shortly a9 (3) case. Therefore, the summation sijynis now replaced by

Z(S)_



The induced representations of Brauer algebras 8251

If the last non-zero component of the vect@v;) — (1) is less than zero, then we
say (w) < (w). This ordering of(wy, wy) is consistent with that for symmetric groups.
[20] If there is ak-fold trace contraction, we regar@d® as vector of lengtht with

the componentsa;,a;,)(a,aiy) - - - (a;,a;p). 1If the last non-zero component of the vector
k

. ’-)b\ . g
of — @F is less than zero, we say* < of. The total order of(w;) (wy) is specified
k
. (—/\ﬁ .
by k = 0,1,2,...,min(f1, f2), where(w;), (w2) stands fork-fold contractions between
indices in(w1) and (wy). For example, inS, x S1 1 D3(n) for the outer product [2k [1],
the six elements are arranged{asg,, g122, €122, g1€2, €2}.
The uncoupled basis vectors needed in the construction of the coupled basis vectors of
[A] for Ds(n) are denoted by

k
ok 1yl el (0?) (09)) = Y1), Y2 (), (2)). (17)

my > “mp my ° Tmp

The basis vectors ofi] ;o can thus be expressed in terms of the uncoupled basis vectors
given by (17):
A r—2kp; ’
Mz tip) = Y. Colr 0ok |ylal ), YPa w)) (18)
mimow k'
where p is the multiplicity label needed in the outer produgt]l, x [A2]s 1 [Alf—2, T
stands for other labels needed for the irrgly [, 0 < k' < k, and the coefficienc V-2 #if

mimak'w

is [A1] 4 X% [A2lf, 1 [A]f—2¢ IDC or the outer-product reduction coefficient (ORC).
The IDCs satisfy the following orthogonality relation:

Z C[/\]‘Hk p;TC[MHk p/;I,N[)‘l'XZ] = 0078 ,p (19)

mimap; k'@ mymy k" o' mymak' w;m’mok" o'
i
mymoak’ wmymyk” w

where NTll%2] is a symmetric norm matrix with elements defined by [14]
N = (rJy 5 @D @1 0h 0 1YY (0D (@), (20)

mymak w;m'mok” o' mp
These matrix elements can be calculated easily using the algebraic relations of the Brauer

algebra given by (1) and (2) and those given in [14]. While the coupled basis vectors
I[[A]f—2x, T; p) are orthonormal.

(INr—2ks T PN p—2ks T, 0) = 83008708 pp k- (21)

3. Evaluation of the IDCs

The linear equation method (LEM) has been proved effective in deriving SDCs and IDCs
of Hecke algebras [20], as well as SDCs of Brauer algebras [16]. The procedure for the
evaluation of the IDCs ofy, x Sy, 1+ Ds(n) is similar to that proposed in [14].

First, applying the operator®; (= g; ore;) withi =1,2, ..., f1 + fo — 1 to (18), the
left-hand side of (18) becomes

Alp— it ’ /
3> ]t o IR e p) QS IV RV, (0D (D) (22)
mymawk’ p't’
while the right-hand side of (18) becomes
3l met (R 06 YR, (09 (D). (23)

mymowk’
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Then, combining (22) and (23), we get

[Mp-2p"s7’ [My-ap't
D Con M p—2ut's IR N[N ks p) = ot 2y wi (24)
p't
WhereC,[:}L’?kf);/wi is the coefficient in front of0! | Y11y % (w9)(w9)) after applyingR;

to the right-hand side of (18), an@i] o t’s p'|RiI[A]f—2cT; p) iS matrix elements oR;
in the standard basis given in (4), which are already known [14].

The linear relations, which are part of the so-called intertwining relations among the
IDCs given by (24), are sufficient to determine these IDCs up to a hormalization factor [14],
which, in turn, can be calculated using the orthogonality relation (19). It will be shown
that the CGCs o0 (n), expressed in terms of these IDCs, can be normalized according
to specific cases and therefore normalization of the IDCs is not neccessary. However, the
sign of the normalization factors, which gives overall phase of the IDCs should be chosen
beforehand. In our calculation, the overall phase is fixed by requiring that the IDCs with
min(z) first, then with mirgm,), and finally with smallest indice® andk’ be positive:

C[)‘]f—ZkP?min(T) > 0. (25)

min(mq)mz,k'=0min(w) =
Using the algebraic relations of Brauer algebras, equation (24), and irreps of symmetric
groups in the standard basis, [21] one can obtain all the IDC%,0% S, * Dy. In what
follows, we will give a simple example of deriving the IDCs and some basic features of
these coefficients.

Example 1.Deriving IDCs of §1 x S1 1 D2(n). The outer-product reduction is [¥ [1] 1
[2] +[17] 4+ [0]. In this case, equation (18) can be written as

3 3 3
2D = aili), [[17) = Y bili), Y cili) (262)
i=1 i=1 i=1

wherea;, b;, and¢; are the corresponding IDCs, and> (i = 1, 2, 3) are the uncoupled
basis vectors defined by

11) =11, 2)] 12) = g111) 13) = el1). (260)
Applying generatorg; andes, respectively, to (26), one obtains
2
al = day a3z = ——ag
n
by=—by,  bz=0 (260)
C1=Cr= 0 C3 75 0.
The norm matrix for this case is
1 Sy Bisis
N R (26d)
(Siliz (Siliz n(Siliz

which can be proved by using (8)—(10). Hence, the coupled basis vectors can now be
written as

2
I[2]) = a1 (|1) +12) — ;|3>)

1% = b1 (1) — 12))
[0]) = c313).

(27)
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Using the norm matrix (26), one can check that the basis vectors given by (27) are
orthogonal. The normalization factors, of which the signs should be chosen according to
(25), can easily be obtained by using (21) and (26)

n 1 1
“l:/2<n+8il,-2(n—2>> bl:fi 63:\/; (28)

It can easily be seen th@d) is a null vector when; # i,. In this case, (27) becomes
outer-product basis vectors of the symmetric gréyp S1 1 S,. It is clear that the induced
representations ab,(n) from Sy, x Sy, are SO (n) tensor component dependent. Actually,
the normalization of these basis vectors with respect to representatiobg(ef is not
necessary. On the other hand, it can be easily seen from (26)—(28) that normalization
factors of the IDCs are als®O (n) tensor component dependent. The situation will become
more complicated wherf; + f> = f > 3. Furthermore, our purpose is to evaluate CGCs
of SO(n) from these IDCs. The coupled basis vectorsSab(n) obtained from these
IDCs through assimilation need to be normalized again. Therefore, unnormalized IDCs of
Sr, x 8t 1 Dy(n) are sufficient to be used in deriving CGCs £0 (n). The method of
how to evaluates O (n) CGCs from these unnormalized IDCs will be presented in the next
section. Using this method, we have calculated unnormalized IDCS5, 0f Sy, + Dy (n)
with f1+ f> = f < 4. The signs of the normalization factors are all chosen to be positive,
which is fixed by our phase convention (25). Therefore, only the absolute values of these
normalization factors need to be determined according to diffefériz) tensor components
later.

For example, consides, x S1 1 Ds(n) for [13] x [1] = [1%] + [21] + [1]. Using the
above-mentioned procedure, one can easily obtain the following results

1
3
I2°]) ﬁ(ll) 12) +13)

1
[21]1) = v3a1(12) +13) — ——(24)+15) +6)))

3
[21]2) = a1(211) + 12) — I3) + — (5 —16))
[1][0]) = az|4)

1
2 = e

[0 = | 5o e08) = 18)

1
where|1) = |, 3), [2) = g2l1), [3) = g1g2/11), 14) = e1g2l1), IS) = gie2|1), |6) = e2l1),

andai, anda, are the corresponding normalization factors to be determined according to
differentS O (n) tensor components later. In the next section, we will outline an assimilation
method for evaluating CGCs ¢fO(n) in the Gel'fand basis from these IDCs.

a2(2|4) + n(|5) + 16)))

4. Evaluating CGCs of SO(n) in its Gel'fand basis

Irreps of SO (m), wherem = 2, 3, ...n, can be labelled by partitiong {,, A2, . . . An,] With
h =m/2 for m even, andh = (m — 1)/2 for m odd, which satisfy the condition

= A =0 for m odd

Am = Aoy = -+ 2 |Apm| =0 for m even
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wherei;,, (i =1,2,...,h) are all integers because we only discuss tensor representations
of SO(m). The partitions of two groups, for exampl§0O(2p + 1) and SO(2p), in the
canonical chailsO(n) > --- > SO0(2p+1) D SO(2p) D --- D SO(2) are related by the
betweeness conditions

M 2pt1 Z A1 2p Z A2 2pp1 Z A2 2p 2 - 2 Ap 2p41 = ) 2pl. (30)
Similar to theU (n) case, we can define Weyl tableau @ (n) in the Gel'fand basis:
fiz2 (£a2)'s | fizas's | fuads | fisas's | fisag's | - |

f24 (£as)'s | fos as’s | fasae's | --- |
f3s (£ag)'s | ------ | (1)

wiH —

where the signs in the front efy (k = 1, 2,...) should always be the same. They can be
taken to be all positive or all negative. The correspondence between the Weyl tableau and
the Gel'fand basis is realized in the following way

L fi2= A2, fiz+ fiz= M3, fiz+ fiz+ fia= A4, ...

+foa =224, foa+t fo5=Aos, faa+ fos+ f26 =Dz, .- (32)

:l:f36 = )"365 f36+ f46 = )»46, ce

For example, basis vectors 60(5) > SO(4) D SO(3) D SO(2) can be denoted either
by a Gel'fand symbol or a Weyl tableau as

[A15225]
[Mahod | _ [ fi2 (Fa2)'s | fizas’s | fiaas's | fisas's | (33)
A3 foa (£aa)'s | fos as's |
A12
where
J12 =212 J13 = A1z — |22 S1a=A1a— d13 J15 = A15— A1g (34)
J2a = |A24] fas = Aas — |Az4l

and signs in the front of, or a4 should be taken as positive (negative}it > 0 (< 0) or
)\.24 2 0 (< 0)

An assimilation method for obtaining CGCs 80D (n) from IDCs of Brauer algebra is
the following. First, the one-box representationi®f(n) is just a rank-1 tensor o O (n)

-7 ()
where the index is used to indicate that the tensor operator is inithespace, whilej; is
the tensor component, and can be taken d#fferent values. Then, an irrep] of SO(n)
can be constructed from rank-1 tensors through tensor product decomposition

172 [A]
TATE.. 1) = T . (36)
Next, the symmetry properties gfspace indice$l, 2, ..., f} and those tensor components
{i1, i, ..., ir} are the same. In other words, interchangearfidk is the same as interchange
of j; and j.. Hence, there is a natural assimilation

After interchangei with j; in basis vectors ofS;, x S, 1 Dy(n), the resulting basis
vectors become the correspondifi@ (n) orthogonal basis vectors in Weyl tableau form.
This fact just reflects the Brauer—Schur—Weyl duality relation betwBe) and O (n).
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For example, the basis vector @f;(n) x Di(n) 1+ D2(n) induced representation for the
coupling [1]x [1] 1 [1?] can be expressed as

‘.> 2002, (20)-112], [1])- (38)

After the assimilation, one gets the corresponding orthogonal basis vect®o 6f) x
SO (n) — SO(n) coupling with

‘ {1 >=\/g(|»>—|,>)- (39)

12

The right-hand sides of (38) and (39) are the same, namely
VI ) -2 M=y 6. ) -1 E&] . @)
= Jia-gn2 = [i@2 - 12). (40)

The only difference is that the space indices are interchanged with the correspSatimg
tensor components. Furthermore, such interchange keeps the Brauer algebrg; amtign
on the uncoupled basis vectors unchanged. While the meaning of (38) and (39) is different,
the former gives the basis vector of induced representatio®6f) x Di(n) 1 Da(n),
the latter gives basis vector &fO(n) x SO(n) — SO(n) in the canonical basis. This
assimilation can thus be obtained just because of the Brauer—Schur—Weyl duality between
D¢(n) and O(n). Furthermore, the phase conventionS® (n) CGCs have already been
determined by that of IDCs of Brauer algebra. Therefore, it is not necessary to consider the
phase convention fof O (n) CGCs again.

However, according to lemma 2 of [17], for the groQyn), wheren = 2/ or 2/ +1, the
irrep Aan, Aoy oo Apns 0] is non-standard ip > [. In these cases, modification rules will
be needed. In such circumstances, some irregular representations will be involved, which
cannot be obtained by using the assimilation method. For example, coupled basis vectors
of [1] x [1] — [11] or [1 — 1] for SO(4) cannot be expressed by uncoupled basis vectors
as given by (39) because the subirrepsSai(4) involve the coupling [1]x [1] — [11]
for SO(3). The irrep [11]= [1] for SO(3) obviously needs modification rules f@(n).
i.e. (39) is only valid forSO(n) for n > 5. Therefore, we only consider CGCs for which
no modification rule is needed in the couplings. Using this assimilation method, one can
evaluate CGCs obO(n) in the canonical basis with no modification rule needed in the
couplings from IDCs ofSy, x S¢, + Df(n). In the following, we will give an example to
show how this method works.

Example 2.Find SO (n) CGCs for [1]x [1] = [2] + [12]* + [0], wherex indicates that this
irrep is only valid forn > 5.

’ 3

Step 1.Write the corresponding basis vectors&fx S; 4 Do(n). Using the results given
in the previous section, we have

[112))=a (1 2a) | (1), [2)) (@12
)= {3a-eol . 20) (@1)
o) =/ e (1] [2]). (@10
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Table 1. ISFs< {ti]] R;]] m> of SO(m) > SO — 1) for [1] x [1] = [2] + [12]2 + [0].
(Al /[r] [A2] [10] [10] [10] [10] [10] [10] [10] [10]
v/ vl [val [10] [10] [10] [0] 0] [10] [0] [0]
E} 1 0 0 0
: T
: e e
I T S
[[1122]]b 1 0 0 0
: i .. 0

@ The corresponding ISFs for this irrep are only valid foe 5.
b It can be taken as [11] or [1-1] when= 5.

(Ml [22]] [A] _ _ a
Table 2. ISFS<[U1] (2] [U]> of SO(n) D SO(n —1) for [2] x [1] = [30] + [21]2 + [1].

[A] /[x] [  [2] [1] 21 [ 2 [ 2 [ 21 1] 21 [1]
I/ vl [val  [2] [ 21 o] [1] [ 1] [9 [0] 1] [0] [0]
[3]

3] 1 0 0 0 0 0

[3]

2 0 1 2 0 0 0

o

[3] [ 2—2) 0 2041 o) 0

[1] 3(n+2)(n—1) 3(n+2) TV 3w+2(n—1)

[3] 2

bl 0 0 2 0 0 [

[21]

[21]b 1 0 0 0 0 0
[21] 2 1

2 0 Z -/3 0 0 0
[21] +1 -2 2n(n—2)

[1] Tn-17 0 0 V35 3017 0
[[fzj].]c 0 0 1 0 0 0
[1] nFDn—2) 2

[1] (n+2)(n—1)2 0 0 _\/('Hr?)n(n*l) _\/(n+2)(n—1)2 0

[1] n 2
o] 0 0 [ 0 0 w2
@ The corresponding ISFs for this irrep are only valid foe 5.

b It can be taken as [21] or [2-1] when= 5.
¢ It can be taken as [11] or [1-1] when= 5.

Step 2. Make assimilations. We need to consider three different ways of assimilation in
this case.
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Table 3. ISFS< Ri]] R)z]] m > of SO(n) > SO(n — 1) for [30] x [10] = [40] + [3L]7 + [20].
(A1 / 31 (1 [31 1 (3] [1] [31 [ [31 [ 381 [ [3] [1] [31 1]
v/ 31 [ 381 [0 [2] [1] [2] [0 [1] [1] [1] [0 [0] [1] [0] [0]
EH 1 0 0 0 0 0 0 0
E} 0 3 3 0 0 0 0 0
4 — n n n
{2} vV 2<n+n17)(%1+4) 0 0 Y 2(:11311) \/m 0 0 0
4 n— n n n
H 0 0 N % 0 0 \/ iﬁniii 4((;1+—12|?)((n+-¢—2£z) 0
{g} 0 0 0 0 /2 0 0 w1
[[331]] 0 Ji o -3 0 0 0 0 0
31 - =
[[2]] vV %fl) 0 0 - "71 —\/% 0 0 0
[[311]] 0 0 ooy O 0 FNe
[[23]:_Ii]b 0 0 1 0 0 0 0 0
[[1321]10 0 0 0 0 1 0 0 0
g JEREREie o W e 00 0
[2]

(2]

o

[ (n2=4)(n+1) [20+D) ] 6
[1] 0 0 n(n—1)(n+4) 0 0 TV n+d n(n=D)(n+4)

[2] n+l
o O 0 0 0 ntl 0 0

/3
n+4

@ The corresponding ISFs for this irrep are only valid foe 5.
b It can be taken as [21] or [2-1] when= 5.
¢ It can be taken as [11] or [1-1] when= 5.

@) i1 = tay, i» = 8a,, (k < m), wheret can be taken as for k = 2, andt = + for
other cases, anél can be taken as- wheng,, is in the second row fom = 4, and can
only be taken as+ for other cases. Because the tensor indices are different, contraction of
i1 andi, is zero. Hence, we get

| (o Taw | )= /5 [Fou ). [ow ] )+ [om ] . [Tou])) (420)
Hel )G [l (@] Gal) e

where the normalization factay = \/g It should be noted that th&0 (2m) tensor indices

daz, can be takenr-ay, only in themth row in the Weyl tableau—ay, in the pth row with
p < m is forbidden according to the definition 60 (n) Weyl tableau. Hencejw,, should
be replaced by, in the pth row with p < m. Thus,8 can be taken as only for m = 4,
and the only possible minus sign efallowed in the first row ik = 2 case. This result is
mainly due to theD (2n) | SO (2n) reduction{is, Ao, ..., Au_1, Au} 4 [A1, A2y oo oy Ape1, Anl
+[A1, A2y ooy A1, —An] if A, # 0. For example, from (48, for m = 3 andk = 2, one
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Table 4. |SFs<Ri]] R;]] E‘”ofSO(n) S 50 — 1) for [17] x [1] = [21] + [13] + [1] for
n>T.
[A] /[r] [22] [12] [10] [12] [10] [12] [10] [12] [10]
w1/ [l [vel [12] [10] 12 [0] [ [ [l [0
[21]
21 1 0 0 0
[[221]] 0 0 1 0
- SR
21 .
i & 0 0 =
[[1133]]a 1 0 0 0
13
W ° ; BE °
1 g
g = ° ° R
{(1)} 0 0 1 0

2t can be taken as [111] or [11-1] when= 7.

Table 5. ISFS< Bﬂ Bﬂ R” of SO(n) > SO — 1) for [13] x [1] = [211] + [14] + [17]
forn > 9.
/][22 [1% [10] [1% [10] (1% [10] (1% [10]
w1/ vl [val [13] [10] (1% [0] 17 [1] (1% [0]
Eiﬂ 1 0 0 0
[[22111]] 0 0 1 0
211 5 : : =
i S
[[11:]]5\ 1 0 0 0
& 0 : E 0
& =) 0 0 it
[[112]] 0 0 1 0

a1t can be taken as [1111] or [111-1] when= 9.

gets the following CGCs 0§ 0(3)

1 [y Ry /1 1 [ ey _ /2
<:|:1 0 :tl>_ 2 <o +1 :|:1>_ 2 (439)
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Table 6. ISFS<[[iﬂ [[iﬂ m>ofs0(n)350<n—1> for [2] x[12] = [31]+[211]+[2] +[12]

forn>7.
D] /Dl Dol 21 03 2 03 @& B3 @ 3 @2 02 2] [
D1/ il Dl 2 23 @2 [ [ [ [0 1% o1
-
[[331]] o 1 0 0 0 0
I
[E%zl]] : 0 0 = 0 0
31 n— n n(n
a1 = 0 Vs meRs o
31 n n n—.
[[1]] 0 Viwdas Vias O 0 R
ot 1 0 0 0 0 0
[[22111]] 0 : 2 0 0 0
B o e e
211 _ nn—.
211 = 0 4y —mses ©
o EE oo °
2 0 JEREE o 0 i
A T R LR
[1?] n(nt D) (n— n
12 nn n L
[[1]] 0 \/ 2o Jiz;z,}),l) *\/ 20i+2) 0 0 \/%

2|t can be taken as [211] or [21-1] when= 7.
b It can be taken as [111] or [11-1] when= 7.

From (42) for k = 3 andm = 5, one gets the following CGCs f&#O (5)

Y (b
1 o [1] 2\@ [0 11| [1] Z‘\@'
0 0 0 0 0 0

(430)

Form < 4 in (42b) there will be representations involving modification rules, which will

not be considered in this paper.

(b) i1 = i» = a,. In this case, the trace contraction is non-zero. We have

er [an ] [ ])=2 N [ ] [o])
m

(44a)
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Table 7. ISFS<E:H [[tﬂ m> of SO() > SO — 1) for [12] x [12] = [22] + [217] +
[1412 + [20] + [12] +[0] for n > 7.
(Al /2] [re] (17 13 17 13 17 (13 17 (13
0/ ] D2l 12 1] [12 [ W [ mo[
Eg 1 0 0 0
& 0 : : 0
[[221111]!, 1 0 0 0
e 0 -4 -3 0
2L = 0 0 =
[[11:]]0 1 0 0 0
e
: o
: N
& = 0 0 =
I R R
[0 =2 0 0 -2

[O] n n

@ The corresponding ISFs for this irrep are only valid foe 9.
b It can be taken as [211] or [21-1] when= 7.
It can be taken as [1111] or [111-1] when= 9.

where there are terms involved in the sum. It should be understood that the sum on the
right-hand side of (44) is shorthand notation, of which the exact expression should be

Z(”I- Lo ] )= [eu]. + 3 ()] [Bez

n=3 S=+,—

’

—datp ‘ )

(440)

Thus, we get

CaTa) =2 (2 )1 (o) (a))- 2200 (). (a]))- @

n#n
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Table 8. |3Fs<[“] [72] [A]> of SO(m) > SO — 1) for [21] x [10] = [31] + [22]+
[va] [v2] | [V]
[211] + [20] + [12] for n > 7.

[A] [21] [1] [21] [1] [21] [1] [21] [1] ([21] [1] [21] [1] [21] [1] [21] [1]
[v] [21] [1] 1] [0] [2 [1 [21 [0 [1? [11 (@3 [0] [1] [ [1] [0]
Eﬂ 1 0 0 0 0 0 0 0

Eg 1 0 0 0 0 0 0 0

[él]] 0 0 1 0 0 0 0 0
I T TR
[F)zl]] oz 0 0 ik P i); 0 0 0

ay ey o o oo EE i o
oo 0 Va0 -/EFo o =
Eﬂ 0 1 3 0 -3 0 0 0

N S = mIEI o
[[221122]]a 1 0 0 0 0 0 0 0
[[22112]] 0 3 -3 0 =t 0 0 0
[[i%]lb] 0 0 0 0 1 0 0 0
B Ve o o o o - jaE EEES o

E} 0 0 o NEC=TR 0 _y
% 0 0 0 0 0 0 1 0

L VEEEZ e o o o X
o 0 e im0 o e

2 |t can be taken as [211] or [21-1] when= 7.
b It can be taken as [111] or [11-1] when= 7.

After normalization, (45) becomes

| o [on ] [ [w])-

Similarly, we have

n(n

Z“>| Lo ]

=2 )P ]

n#n

. ] ). (46)

(47)
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(¢) i1 = i» = a; (2 < k < n). The final results in this case are similar to those of (46)
and (47):

k—1 1
GaTa]) =2 @] (@0 20 ). (5] ) 69
o0 =31 (o] [ )+ E 20| (o] - [ ) 9

w#k

The corresponding CGCs ¢fO (rn) can now be read off from (42 b), (46)—(48). When
n = 4, for example, thes0O(4) D> SO(3) D SO(2) CGCs read off from (46) and (47) are

1] 1] [2] [1] (1] [2] 1] (1] [2]

[0] [ 1[0])=% <[1] [1] [0]>=<[1] [1] [0]>= i

<O 0 0> \/; 1 -11 0 -1 110 \/;

1] [1]] [2] [1] [1]] [O] [1] [1]] [O]

[ [1[[0])=-/% <[0] [0] [0]>=<[1] [1] [0]>= i (50)
<0 0 0> \/; 0 0l O 0O 010 \/;
(580 (8 B]8)--

1] [1 =([1] [ =_ /%

1 -1l 0 -1 110 !

Whenn = 4 andk = 3, from (48) and (49), we have

11 [1] [2] 1] [1]| [2] 1] [1]] [2]

<[1] [1] [2]>=\/§ <[1] [1] [2]>=<[1] [1] [2]>= 5 (51)
0O o010 1 -11 0 -1 110

[1] [1]] [O] 11 (1] [0] 1] 1] [0]

<o o‘o>:\/g <1 -1 o>:<—1 1‘0>:_% 2)

where (52) gives CGCs &f 0 (3).

Using this method, we have derived modification-rule-free CGCs$@fn) for the
resulting irrep k1, A2, A3, A4, 0] with Zj‘:l A < 4 from IDCs of Sy, x Sg, + Dy(n) with
f1+ f2 = f derived in the previous section. However, the expressions of the CGCs for
any n are too cumbersome to be tabulated. While the ISFS®@fn) > SO(n — 1) for
any n, which can be obtained according to Racah factorization lemma [4], are concise and
easily to be listed in a table. For example, one can easily read off the following ISFs of
SO(m) D SO(n — 1) with n > 4 from (46):

[ [\ _ /n-1 [ [me\_ 1
<[01 [0] [01>‘ <[1] 1] [01>‘ 3)

—
The notation for the ISFs used in (53) is much simpler than that of CGCs. Therefore, we
shall only list ISFs ofSO(n) > SO(n — 1) for n > 4 in the next section.

5. ISFs of SO(n) > SO(n — 1)

In this section, we will list some ISFs a§0O(n) > SO — 1) derived by using the
assimilation method outlined in section 4. According to Racah factorization lersithé;)
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CGCs in the canonical baskO(n) D SO(n —1) D --- D SO(2) can be expressed as

[A'ln] [)VZn] Tn [)‘n]

(A1 -1l [A2 1] | [Aa-a] | _ Z< (A1) [A2.] T [An] >
o ]\l 2wl | Teen [Pl
mis Moy my
[)"l nfl] [)"2 n] Th—1 [)‘nfl]
[?»1. .n.—2] [kz' 'n'—2] [)‘:n.—.Z] (54)
map map my
where

[)‘111] [)‘271] Tn [)‘n]

mi ma2 ma
is SO(n) CGC,
< Dl 2l |z [ >
[A1a—1] [A2 n-1] | Tt [An=1]

is SO(n) D SO(n — 1) ISF, andt, is the multiplicity label needed in the coupling
[A1:.] x [A2:] | [A:]- The ISFs satisfy the following orthogonality conditions

(1] [A24] T [An] (1] [A21] 7, [A]
Z <[)»1 n-1]  [A2 n-1] >< >

i 0 Th-1 [)&n—l] [)"l n—l] [)‘2 n—l] Th-1 [)\n—l]
1 n-1A2 -1

= 81,8/,
Z < [A1] [A2.]
i [)‘1 n71] [)"2 nfl]

= 5;\/

1 ,,,1}\1 ”718}\’2 ,,,1}\2 n—1°

(56)

Ty [l > < (Al [A24]
Tn—-1 [)"nfll [)‘é]_ ,171] [)”/2 ,,,1]

Ty [An] >

Th—1 [)‘nfl]

In the following, we list modification-rule-free‘O((z) D SO — 1) ISFs for the coupling
[A4] x [A2] with resulting irreps fLi,, Aoy, Aan, A4y, O] fOr 3, A;, < 4, which are obtained
from IDCs of Sy, x S, + Dy(n) with f1 4+ fo = f < 4.

6. Conclusions

In this paper, induced representations @f(n) from Sy, x Sy, with f1 + fo = f are
constructed. The IDCs of;, x Sy, 1 Dy(n) with f < 4 up to a normalization factor are
derived by using the linear equation method. It is found that these IDCS@(e) tensor
component dependent. Weyl tableaux for the corresponding Gel'fand basi® @f) are
defined. The assimilation method for obtaining CGCss 6f(n) in the Gel'fand basis with

no modification rule involved couplings from IDCs of Brauer algebras are proposed, which is
based on the Brauer—Schur—Weyl duality relation betw@én) and Brauer algebr®,(n).

ISFs of SO(n) D SO(n — 1) for the resulting irrep {1, A2, A3, Ag, 0] with Zle A < 4 are
tabulated. From these tables of ISFs, one can find that there are two types of modification-
rule-free ISFs o650 (n) > SO(n—1) or CGCs ofSO (n) in its canonical basis. The type-one
ISFs or CGCs are-independent, which are the same as ISF& 6f) > U(n — 1) or CGCs
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of U(n) in the canonical basis. Therefore, the following type of ISF&/¢t) D U(n — 1)
are alsoSO(n) > SO(n — 1) ISFs:

[)‘1] [)\2] Tn[)"/]
<[v11 [v2] rn_l[v'1> 7

with »°, A — Zj vj’. = 0 or 1. Hence, ISFs fot/(n) > U — 1) of this type or CGCs

for U(n) of this type derived previously [21-23], in which many results are with outer

multiplicity, are also those offO(n). From a Brauer algebra point of view, there is

no trace contraction between;] and [r,] in SO(n) coupings, and in the reductions of

SO(n) | SO(n — 1) in these cases. As a consequence, these coefficients can be derived

from the IDCs ofS;, x Sy, 1 S¢, which has already been discussed in [21]. The type-two

ISFs of SO(n) D SO(n—1) (CGCs ofSO(n) in the canonical basis) are rankdependent,

which can only be obtained from IDCs &f, x S, + Ds(n). However, how to derive

modification rule involved CGCs of O(n) from the IDCs of Brauer algebras still needs

further study.
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